


What is MSD-LIVE?

Casey Burleyson, Zoë Guillen, Carina Lansing, Mathew Thomas, and Jon Weers

U.S. DEPARTMENT OF **BATTELLE**

PNNL is operated by Battelle for the U.S. Department of Energy

It's Time to Shift Emphasis Away from Code Sharing

ave you ever watched a student struggle to perform a seemingly straightforward analytical procedure? It may be a routine preprocessing step, like detrending a time series or removing a seasonal cycle, but somehow the simple operations can stymie a student for weeks. It's tempting to assume that young people with their short attention spans are unwilling or unable to think through the task at hand, but a closer look suggests that students may have little choice but to blindly tinker with code until things seem to work.

SCIENCE NEWS BY AGU

VOL. 101 | NO. 8

before, rather than moving forward. But worse than simply wasting time, our way of doing business has ensured that scripting typos inevitably go undetected, leading to publication of incorrect findings that at best get caught by follow-on studies or at worst go unidentified and perpetually misguide science.

We Need Better Toolboxes

For efficiency, accuracy, and transparency in Earth science, we need to develop and adopt standard sets of well-tested tools for all our

Europe's Biodiversity Strategy

A Virtual Hackathon **Fights Locusts**

MH370's Search

Reveals New Science

INNOVATIONS IN TECHNOLOGY GOT US INTO THE DATA PROBL

WE NEED AN EVOLUTION IN TECHNOLOGY TO GET US OUT.

Improving Reproducibility in Earth Science Research

it is available, missing information or incomplete descriptions can make the software hard to understand

The workflow embedded in software must be well described for others to understand how processes data. This description includes input and output data sets, workflow logic, algorithms used, the version of the software or library used, and more.

A GEODATA FABRIC FOR THE 21ST CENTURY

WE HAVE THE POTENTIAL TO TRANSFORM OUR UNDERSTANDING OF EARTH—IF WE CAN JUST FIGURE OUT HOW TO HARNESS EVER GROWING DATA STREAMS.

By Jeff de La Beaujardière

CREATING DATA **TOOL KITS** THAT EVERYONE **CAN USE**

BY ZHONG LIU, VASCO MANTAS, JENNIFER WEI, **MENGLIN JIN, AND DAVID MEYER**

Earth scientists need to make the growing wealth of data more accessible and build data services meant for interdisciplinary use.

The National Academies of SCIENCES · ENGINEERING · MEDICINE

CONSENSUS STUDY REPORT

OPEN SCIENCE BY DESIGN

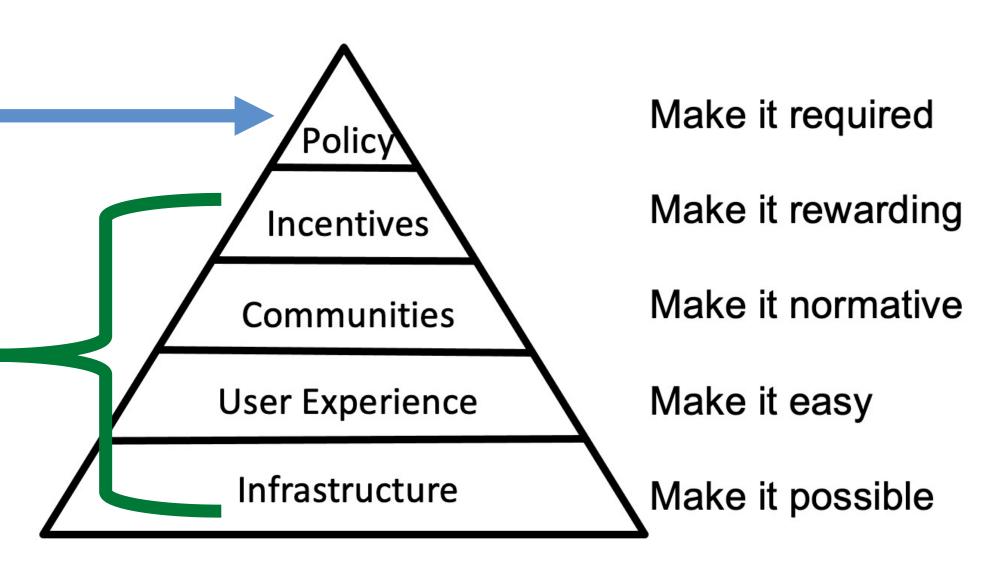
Realizing a Vision for 21st Century Research

Tackling data challenges and incorporating physics into machine learning models will help unlock the potential of artificial intelligence to answer Earth science questions.

Advancing FAIR Data in Earth, Space, and Environmental Science

By Manil Maske Hamed Alemohammac Kevin J. Murphy, and Rahul Ramachandran

Project-Specific Data Management


From EESSD's Strategic Challenge #1: Lots of Plan: "Effective data reinventing the wheel... management, including developing community Challenge #2: Lots of data standards and different sized wheels... formats and sharing and preserving data, can 500N: 14?! RIDICULOUS! WE NEED TO DEVELOP increase the pace of ONE UNIVERSAL STANDARD SITUATION: SITUATION: THAT COVERS EVERYONE'S THERE ARE THERE ARE scientific discovery and USE CASES. 14 COMPETING 15 COMPETING STANDARDS. STANDARDS. ensure scientific integrity." xkcd

Facilitating Open Data and Code

Journals and funders largely skipped to this end of the pyramid...

MSD-LIVE is about tackling these foundational elements of the pyramid...

Really nice conceptual diagram shamelessly stolen borrowed from Brian Nosek's talk yesterday

MSD-LIVE Evolved in Multiple Phases

- Initial identification of user needs
- Initial technical scoping and feasibility assessment
- Review of other archives (e.g., ESS-DIVE, ARM, EMSL, A2E, NCAR, and NASA platforms)
- White paper to BER

Phase 2 (May 2019 – Feb 2021):

- Identify and evaluate potential off-the-shelf tools
- Stakeholder meeting to validate assumptions, refine technical requirements, and prioritize development activities
- Revised and expanded white paper to BER
- **Phase 3** (Feb 2021+)
 - Funding and implementation!

What is possible?

Top-10 Most Pressing Use Cases

Name	Description
Find Data	Find datasets produced by other users and projects
Archive Data	Archive data and generate DOIs in order to meet journal requirements
Version Control	Manage multiple versions of a dataset
Training	Train new team members to effectively manage their data and code
Control Access	Create teams that cross institutions in order to manage access to data and code
Share Data	Share datasets across multiple institutions collaborating on a project in real-time
Analyze Data	Create, run, and share code to analyze or visualize data
Multi-Model Workflows	Create, execute, document, and publish multi-model workflows
ML/AI	Assemble data lakes and execute ML/AI algorithms on large pools of data
Move Code to Data	Deploy models to run on new computational resources to avoid large transfers

Our Vision for MSD-LIVE

bout My MSD I

News & Events

Sign Up

Data & Code Repository

Discover and share curated domain datasets, simulation codes, and workflows.

Computational Resources

View the MSD-LIVE computational infrastructure and learn how to run distributed workflows.

Team Services

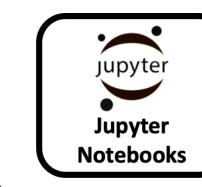
Create and manage project teams and their collaborative tools and resources.

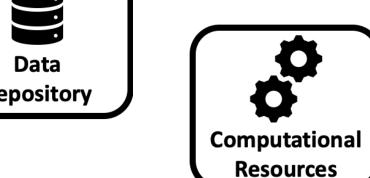
Get Started!

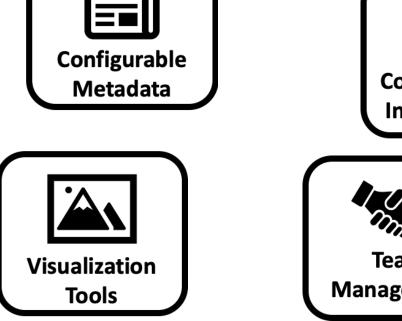
Learn how to start using MSD-LIVE for your team projects.

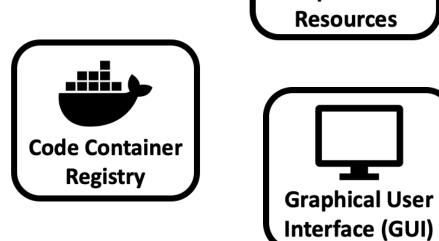
- A data and code management system combined with a distributed computational platform.
- Enable MSD researchers to document and archive data, run models and analysis tools, and share data, software, and multi-model workflows.
- A cornerstone capability of the MSD Community of Practice.

What Our Users Want









What Our Users Want

Enabling Infrastructure

Core Data

Repository

Configurable Storage

Configurable Metadata

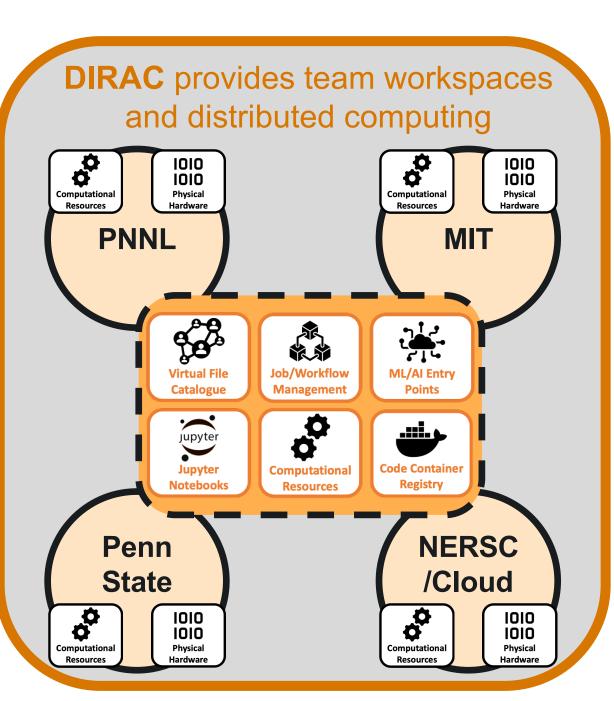
Hook to Code Repositories

Distributed Computing

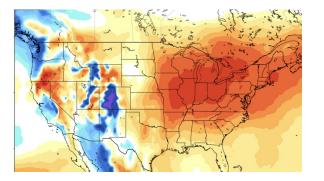
Planned Architecture of MSD-LIVE

Invenio RDM provides dataset and software archival and publishing

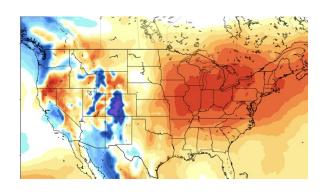
Repository



PNNL provides the enabling infrastructure



-IM₃---



-IM₃-----IM₃----

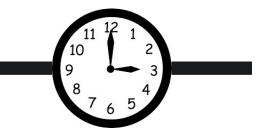
MOSART-WM

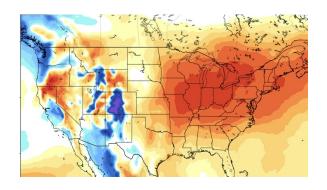
GCAM-USA

+

TELL

+


GOWEST



nature

MOSART-WM

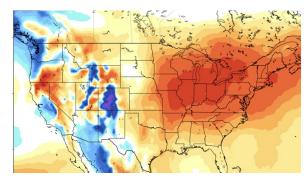
+

TELL

+

GOWEST

nature



MOSART-WM

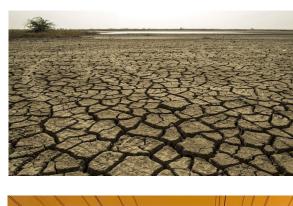
GCAM-USA

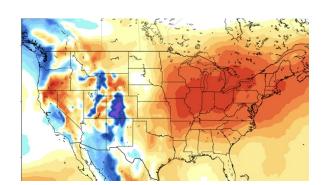
+


TELL

+

GOWEST


nature



-IM₃----IM₃

MOSART-WM

+

GCAM-USA

+

TELL

+

GOWEST

nature

Retrieve

- Input data + metadata
- Versioned model source code
- Initial and boundary conditions
- Data transformation scripts
- Model outputs

