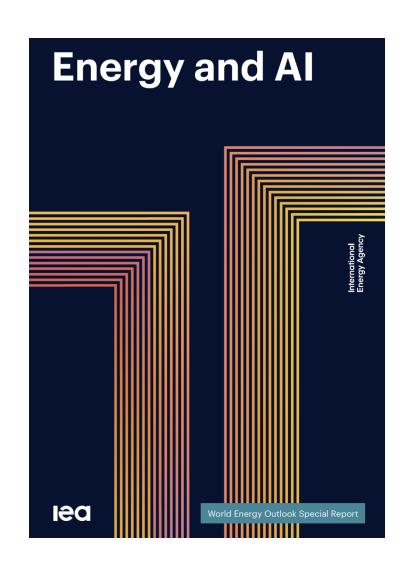
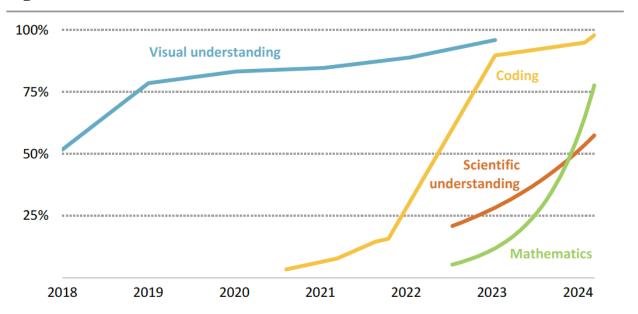
INTEGRATED MULTISECTOR MULTISCALE MODELING

Powering Al: The **Energy-Water Implications of Data Centers**

Casey Burleyson, Kerem Ziya Akdemir, Kendall Mongird, Travis Thurber, and Jennie Rice

This research is supported by the U.S. Department of Energy, Office of Science, as part of research in MultiSector Dynamics, Earth and **Environmental System** Modeling Program





Energy and artificial intelligence are inextricably related

"The development and uptake of artificial intelligence (AI) has accelerated in recent years — elevating the question of what widespread deployment of the technology will mean for the energy sector. There is no AI without energy — specifically, electricity for data centers."

Figure 1.11 Accuracy of Al models in selected benchmarks, 2018-2024

The step change in Al performance is due in large part to widely available cheap computing

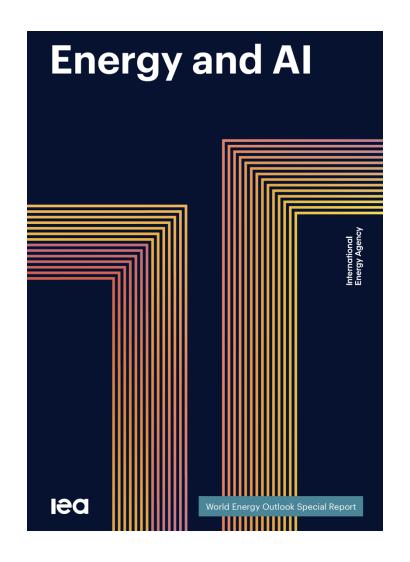
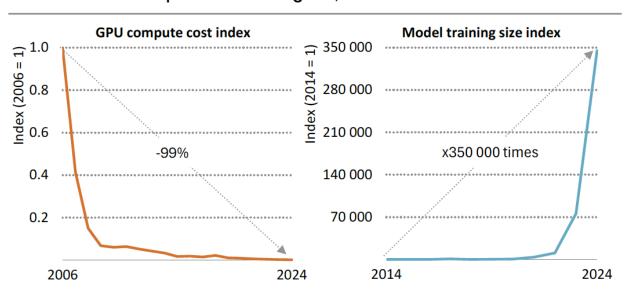



Figure 1.1 Description Cost, 2006-2024, and notable Al model computational training size, 2014-2024

"The amount of data used to train state of-the-art AI models has increased by nearly 30,000 times since 2008...The amount of computational power used to train state-of-the-art AI models has increased by around 350,000 times since 2014."

Projections of new data centers to support generative Al and cryptomining are large but highly uncertain

- Projections suggest up to a 15% annual growth in electricity demand from data centers within the next 5-10 years (EPRI 2024).
- Usage projections from more recent AI models suggest electricity demand could be much lower than ChatGPT-type models.
- Total electricity demand may grow 35-50% by 2040, driven by domestic manufacturing, data centers, and electrification (ACP 2025).
- Data centers are also potentially large consumers of fresh water, depending on the cooling technology (Siddik et al. 2021).

"Drought-stricken communities push back against data centers", 19-Jun 2021, NBC News

Rapid, uncertain growth in electricity demand poses reliability challenges for the grid

"Electricity peak demand and energy growth forecasts over the 10-year assessment period continue to climb; demand growth is now higher than at any point in the past two decades. Increasing amounts of large commercial and industrial loads are connecting rapidly to the BPS. The size and speed with which data centers (including crypto and AI) can be constructed and connect to the grid presents unique challenges for demand forecasting and planning for system behavior."

	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
		1000000	0.00000	2000000	0.200.00	20000		3-20-2000	20000000	Market St.	
MISO	17.7%	10.3%	10.3%	13.2%	8.6%	7.1%	10.6%	8.2%	7.5%	4.2%	-2.5%
MRO-Manitoba	12.5%	21.3%	18.4%	18.0%	15.0%	9.8%	0.5%	-0.6%	-1.7%	-2.9%	-4.2%
MRO-SaskPower	28.9%	27.8%	26.6%	31.1%	29.4%	7.0%	28.8%	28.0%	26.7%	26.8%	1.2%
MRO-SPP	28.3%	26.7%	26.0%	25.0%	20.8%	19.1%	26.7%	24.9%	23.5%	22.4%	8.1%
NPCC-Maritimes	18.9%	20.6+%	25.5%	25.1%	18.6%	3.9%	23.4%	20.7%	19.1%	17.7%	-1.5%
NPCC-New England	20.4%	25.0%	25.0%	26.3%	24.9%	23.5%	22.0%	20.1%	19.7%	17.1%	14.6%
NPCC-New York	18.4%	17.1%	21.4%	22.5%	22.4%	21.6%	20.7%	18.3%	16.7%	14.9%	13.6%
NPCC-Ontario	22.5%	20.8%	23.6%	15.7%	23.0%	9.5%	5.1%	-0.2%	-1.4%	-3.9%	-5.5%
NPCC-Quebec	12.5%	12.2%	13.1%	14.2%	12.6%	11.3%	9.8%	6.2%	3.5%	0.5%	-2.2%
PJM	29.8%	34.9%	35.7%	28.1%	21.4%	18.2%	23.1%	21.6%	20.1%	18.5%	10.3%
SERC-C	28.2%	18.9%	18.9%	15.0%	16.0%	15.2%	17.3%	17.1%	18.4%	21.1%	11.8%
SERC-E	30.4%	27.3%	25.8%	24.6%	20.6%	14.4%	14.3%	10.2%	6.3%	4.6%	-2.2%
SERC-FP	27.0%	25.4%	26.0%	23.2%	22.1%	20.9%	18.4%	22.0%	20.4%	18.2%	16.0%
SERC-SE	44.9%	39.9%	35.9%	31.5%	24.5%	21.4%	27.7%	25.8%	24.7%	23.7%	13.0%
TRE-ERCOT	24.3%	30.2%	32.5%	29.7%	25.6%	25.4%	27.8%	28.0%	28.4%	28.9%	24.9%
WECC-AB	36.3%	35.8%	35.7%	38.5%	41.7%	41.9%	35.4%	41.2%	33.6%	27.8%	27.0%
WECC-BC	20.9%	25.2%	25.2%	15.8%	15.9%	22.3%	22.1%	21.6%	21.2%	13.4%	19.9%
WECC-CA/MX	38.6%	45.5%	45.2%	38.4%	43.1%	28.8%	29.6%	23.3%	25.0%	15.2%	11.1%
WECC-NW	34.5%	40.3%	38.9%	35.6%	30.7%	24.5%	18.3%	12.2%	10.2%	8.1%	5.9%
WECC-SW	28.6%	37.0%	35.6%	31.6%	24.2%	17.4%	11.3%	7.7%	0.2%	-4.7%	-9.6%

Data centers come online faster than new generation or transmission can be built to serve them

"Large loads are often able to plan, permit, and build within one or two years (or quicker) whereas utility scale generation can take three to ten years. Small transmission upgrades typically take two to three years from planning to energization whereas large transmission infrastructure projects often require more than ten years..."

An Assessment of Large Load Interconnection Risks in the Western Interconnection

Technical Report

PREPARED FOR:

Western Electricity Coordinating Council Salt Lake City, UT, USA W: www.wecc.org

PREPARED BY:

Elevate Energy Consulting

Spokane, WA, USA T: 509-596-1495

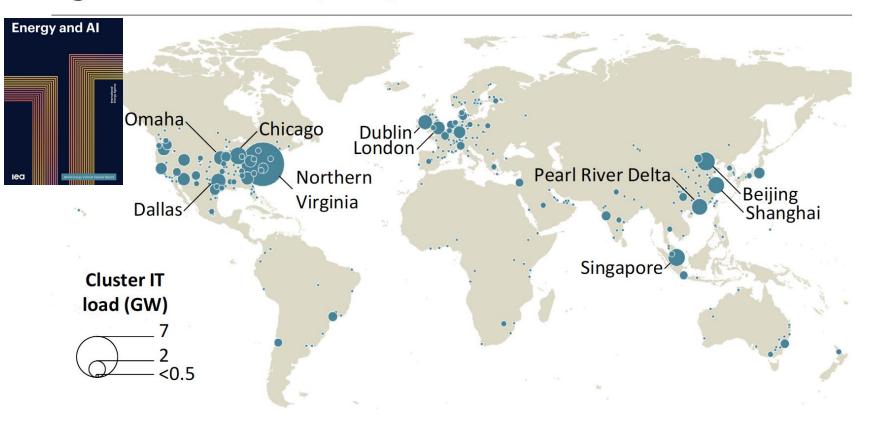
E: info@elevate.energy W: www.elevate.energy

AUTHORS

Ryan Quint, Jiecheng (Jeff) Zhao, Kyle Thomas

February 2025

Utilities are scrambling to adapt


"It took SRP 120 years to develop the generation capacity we have today.

We will need to double or triple our capacity in the next decade to be able to meet the forecasted demand growth of nearly 40% while becoming more sustainable. Rapid growth and supply chain issues add complexity, but we're making significant progress, adding 1,100 MW of new capacity this past summer alone."

Salt River Project, March 2025

If we don't build it, somebody else will

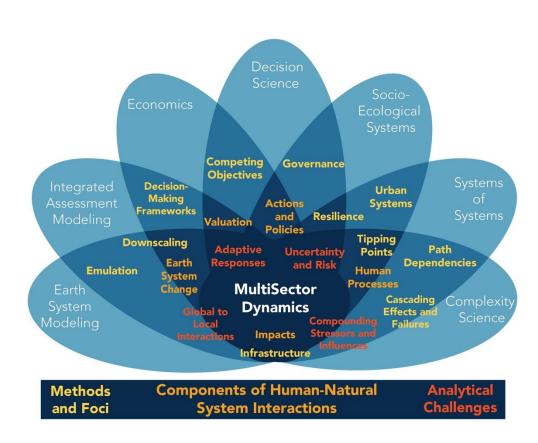
Figure 1.13 > Global map of large data centre clusters, 2024

"You know, in the original
Manhattan Project, Nazi Germany
was also trying to develop [an]
atomic bomb," Wright said. "So,
the cost of being second was just
devastating. Like, that was a race
not [that] you want to win. We
had to win. And I think AI has
similar overlay." Chris Wright

Al and energy abundance are tightly coupled

"The cost of Al will converge to the cost of energy...the abundance of it will be limited by the abundance of energy."

Sam Altman's Senate Testimony, May 2025


Energy sector data center risk is a classic MultiSector Dynamics problem

Connection to MSD themes:

- Systems of systems: Energy-water-economy interactions
- Economics: Supply chains and international trade
- Methods and analytical challenges:
 - Adaptive responses
 - Regulatory uncertainty and risk
 - Path dependencies

Challenges:

- Data limitations:
 - Rapid onset of highly non-linear growth rates
 - Proprietary and business-sensitive data
- Lack of models and frameworks:
 - How would one write an objective function for the growth rate of data centers?
 - How do you model their operations when their designs are constantly evolving?

Reed, P. M., and Coauthors, 2022: MultiSector Dynamics: Advancing the science of complex adaptive human-Earth systems. *Earth's Future*, 10, e2021EF002621, doi:10.1029/2021EF002621.

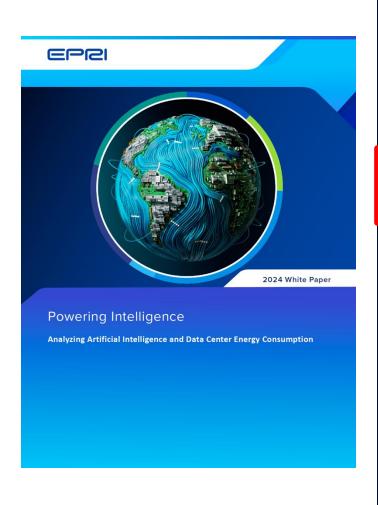
Task 1 – Impacts of alternative scenarios of data center electricity demand growth on grid stress

Science Questions:

- 1) What is the projected impact (i.e., on electricity prices, reliability, etc.) of data centers on grid operations if grid infrastructure is built without considering these demands? Under what growth rates do the projected data center demands stress the grid?
- 2) How might delaying scheduled generator retirements lessen grid stress due to data centers?
- 3) What is the impact of treating some data center loads as interruptible demands? If their loads were modeled as appropriate for demand response participation, how does that added flexibility reduce stress on the grid?

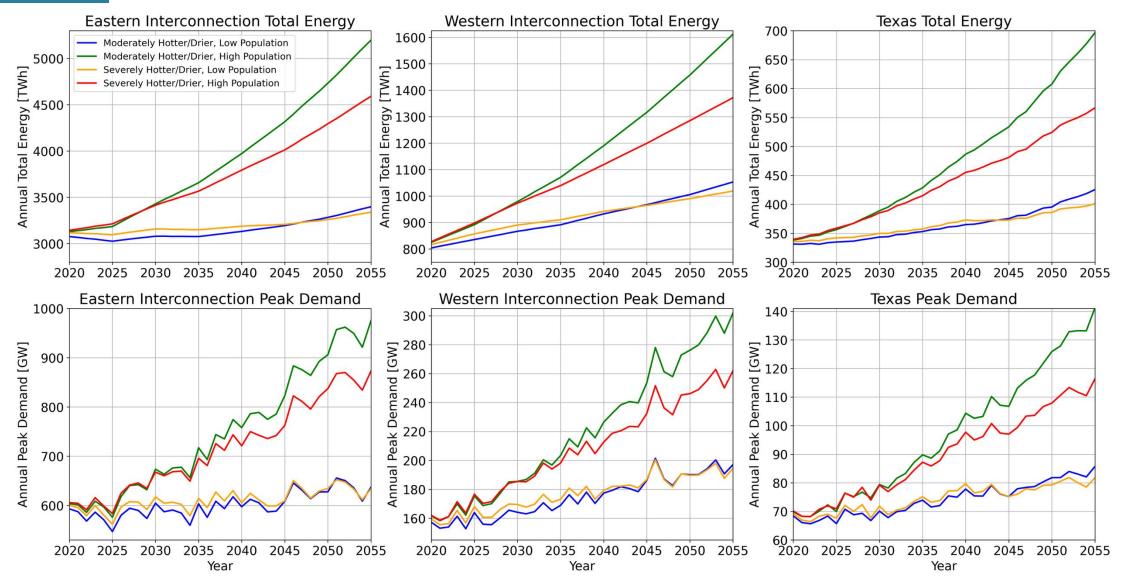
Study Parameters						
Time Horizon	2025-2035					
Spatial Resolution	Balancing Authorities					
Key Assumptions (also modeled as sensitivities)	 Growth rates of 3.71-15% annually Data center hourly demand profiles are flat No new generation explicitly to meet data center demand 					

Task 1 – Impacts of alternative scenarios of data center electricity demand growth on grid stress

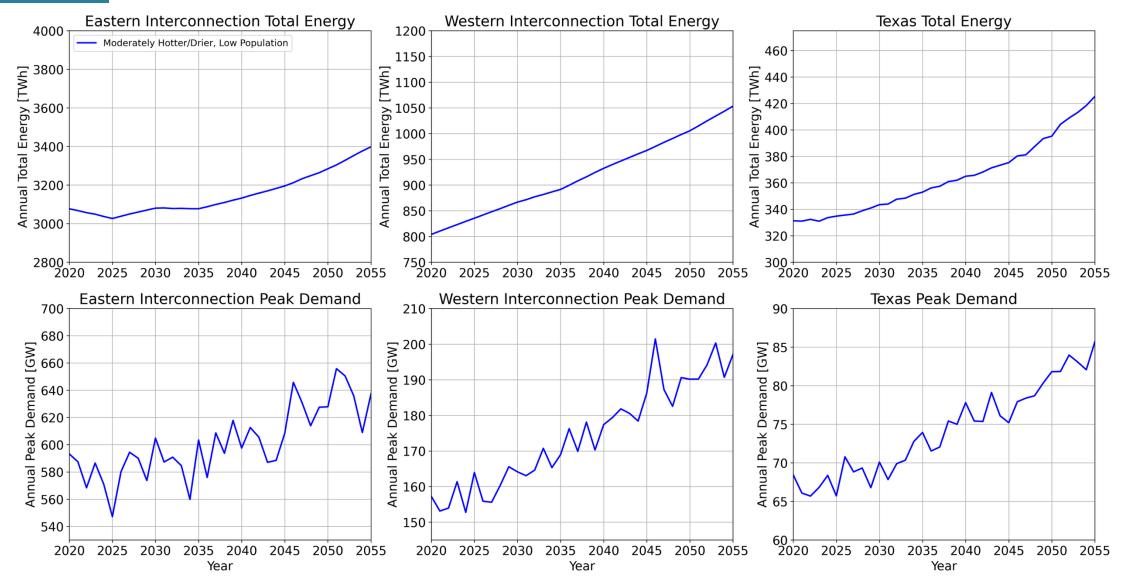

"We have largely taken advantage of an overbuilt system. We are now imposing a significant cost on that system."

Brian George, Google, May 2025

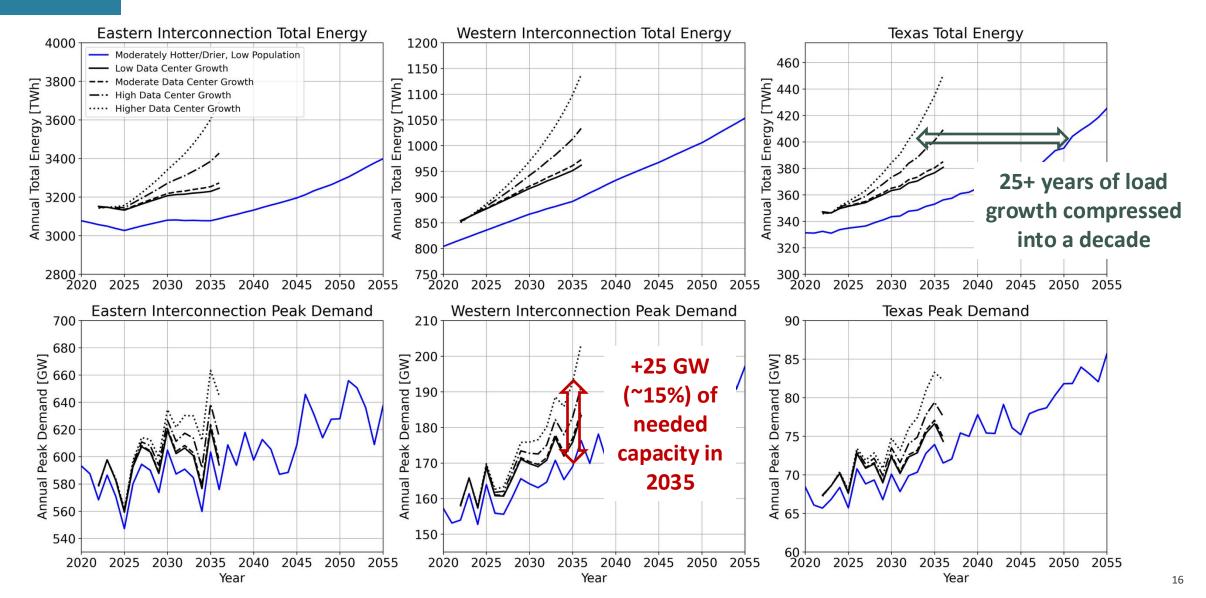
Study Parameters						
Time Horizon	2025-2035					
Spatial Resolution	Balancing Authorities					
Key Assumptions (also modeled as sensitivities)	 Growth rates of 3.71-15% annually Data center hourly demand profiles are flat No new generation explicitly to meet data center demand 					


Projections of data center growth were sourced from the peer-reviewed and gray literature

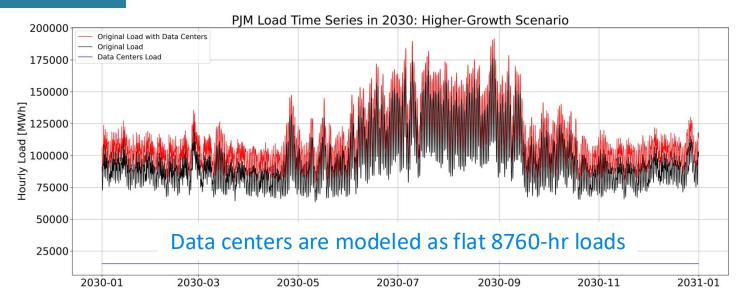
FORECASTED SCENARIOS: PROJECTIONS OF DATA CENTER ELECTRICITY CONSUMPTION IN TOP 15 STATES (2023—2030)										
	2023 Load		Low-growth scenario (3.71%)		Moderate-growth Scenario (5%)		High-growth Scenario (10%)		Higher-growth Scenario (15%)	
STATE	MWh/y	% of Total State Electricity Consumed (%EC)	MWh/y	% of Total State Electricity Consumed (%EC)	MWh/y	% of Total State Electricity Consumed (%EC)	MWh/y	% of Total State Electricity Consumed (%EC)	MWh/y	% of Total State Electricity Consumed (%EC)
Virginia	33,851,122	25.59%	43,683,508	29.28%	47,631,928	31.10%	65,966,260	38.47%	89,880,357	46.00%
Texas	21,813,159	4.59%	28,149,002	5.47%	30,693,306	5.94%	42,507,676	8.04%	57,917,564	10.64%
California	9,331,619	3.70%	12,042,078	4.43%	13,130,525	4.81%	18,184,686	6.54%	24,777,000	8.70%
Illinois	7,450,176	5.48%	9,614,151	6.53%	10,483,145	7.08%	14,518,285	9.54%	19,781,455	12.56%
Oregon	6,413,663	11.39%	8,276,574	13.39%	9,024,668	14.43%	12,498,415	18.93%	17,029,342	24.14%
Arizona	6,253,268	7.43%	8,069,590	8.81%	8,798,975	9.53%	12,185,850	12.73%	16,603,465	16.58%
lowa	6,193,320	11.43%	7,992,230	13.44%	8,714,623	14.48%	12,069,029	18.99%	16,444,294	24.21%
Georgia	6,175,391	4.26%	7,969,093	5.08%	8,689,396	5.51%	12,034,090	7.48%	16,396,690	9.92%
Washington	5,171,612	5.69%	6,673,757	6.77%	7,276,977	7.34%	10,078,009	9.88%	13,731,490	13.00%
Pennsylvania	4,590,240	3.16%	5,923,520	3.78%	6,458,929	4.11%	8,945,079	5.61%	12,187,850	7.49%
New York	4,067,385	2.84%	5,248,796	3.40%	5,723,219	3.69%	7,926,182	5.05%	10,799,583	6.75%
New Jersey	4,038,360	5.42%	5,211,341	6.46%	5,682,378	7.00%	7,869,621	9.44%	10,722,517	12.44%
Nebraska	3,959,520	11.70%	5,109,601	13.75%	5,571,442	14.81%	7,715,984	19.41%	10,513,184	24.71%
North Dakota	3,915,720	15.42%	5,053,079	18.00%	5,509,811	19.31%	7,630,631	24.89%	10,396,888	31.11%
Nevada	3,416,707	8.69%	4,409,122	10.28%	4,807,649	11.10%	6,658,195	14.75%	9,071,924	19.07%

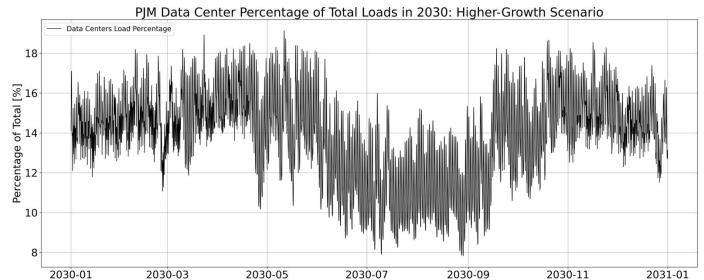

We are building on top of existing IM3 load projections

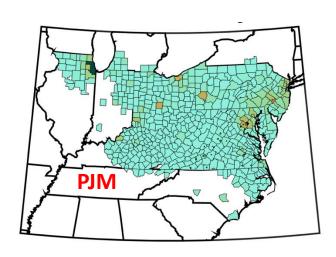
Burleyson et al. 2025: When do different scenarios of projected electricity demand start to meaningfully diverge? *Applied Energy*, 380, 124948, doi:10.1016/j.apenergy.2024.124948.


We are building on top of existing IM3 load projections

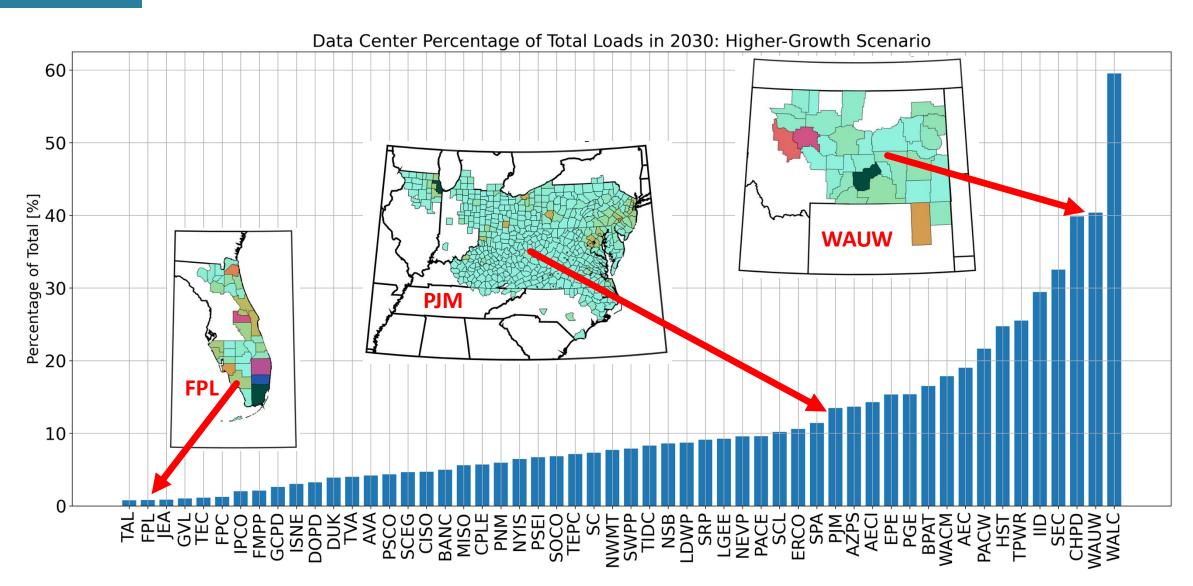
Burleyson et al. 2025: When do different scenarios of projected electricity demand start to meaningfully diverge? *Applied Energy*, 380, 124948, doi:10.1016/j.apenergy.2024.124948.



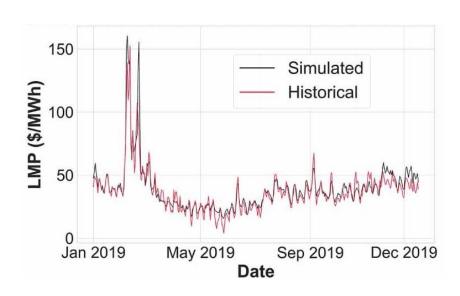

Data centers significantly accelerate load growth in all three grid interconnections

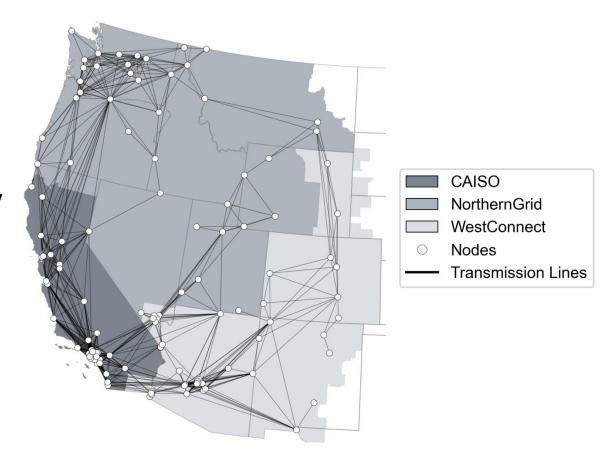


We created data center load growth projections for every Balancing Authority (BA) in the CONUS



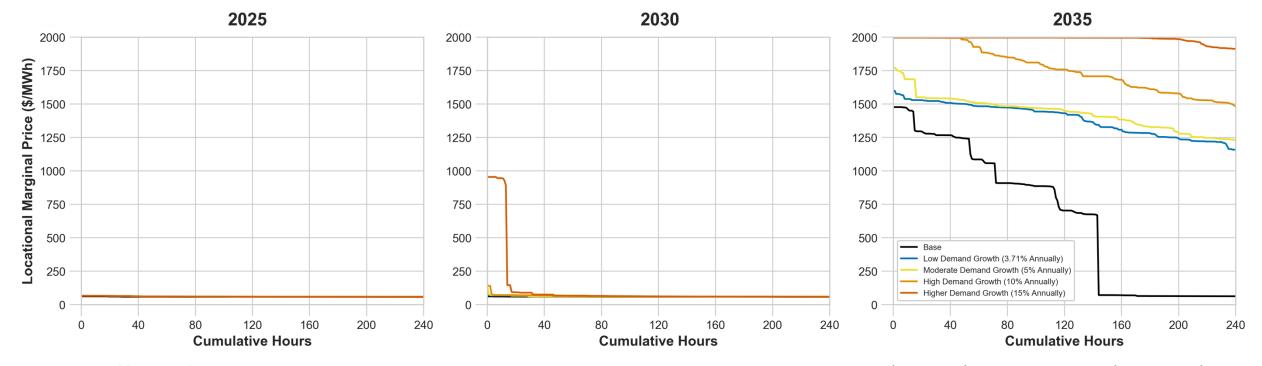
For PJM, a large BA in the Eastern Interconnection, the highest data center growth rates translate into +8-18% load growth due to data centers by 2030.


Data centers may account for 40-60% of the total load in some smaller rural BAs



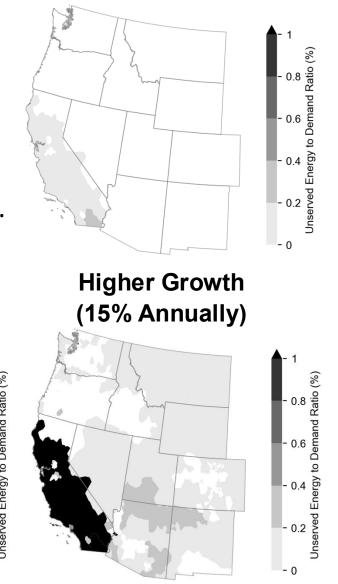
The Grid Operations (GO) model is an open-source and customizable grid operations modeling tool

- Creates simplified representations of the three U.S. interconnections to balance accuracy and computational complexity.
- Dispatches generators to balance hourly supply and demand with the optimization goal to minimize cost.
- Validated with historical grid outcomes such as electricity prices and the generation mix used to meet demand.

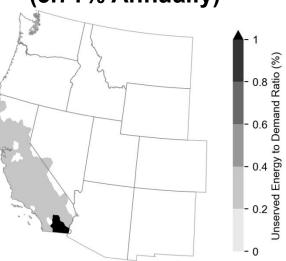

Data center growth leads to higher hourly electricity prices in the Western Interconnection

- The effect of data center loads on electricity prices is relatively small in 2025 (+3-4%) and in 2030 (+5-12%).
- Price divergence between different data center growth scenarios becomes clear in 2035.
- Compared to the base scenario, yearly average electricity prices in 2035 increase 43%, 47%, 91%, and 202% under low, moderate, high, and higher data center load growth scenarios, respectively. This extreme increase is largely driven by data centers exacerbating the prices during worst (most expensive) 10-15 days of the year.

Data center growth leads to higher hourly electricity prices in the Western Interconnection

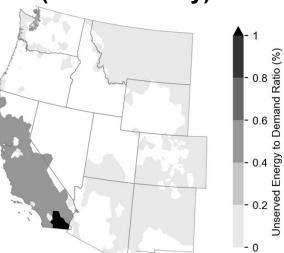


- The effect of data center loads on electricity prices is relatively small in 2025 (+3-4%) and in 2030 (+5-12%).
- Price divergence between different data center growth scenarios becomes clear in 2035.
- Compared to the base scenario, yearly average electricity prices in 2035 increase 43%, 47%, 91%, and 202% under low, moderate, high, and higher data center load growth scenarios, respectively. This extreme increase is largely driven by data centers exacerbating the prices during worst (most expensive) 10-15 days of the year.

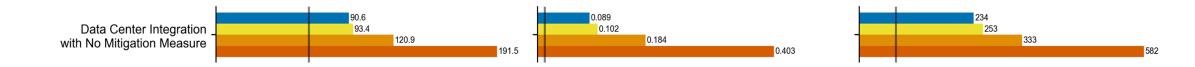

Unserved energy also increases, especially in California

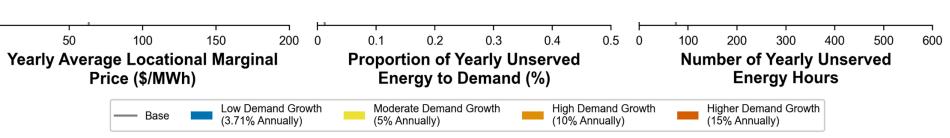
Base Case (No Data Centers)

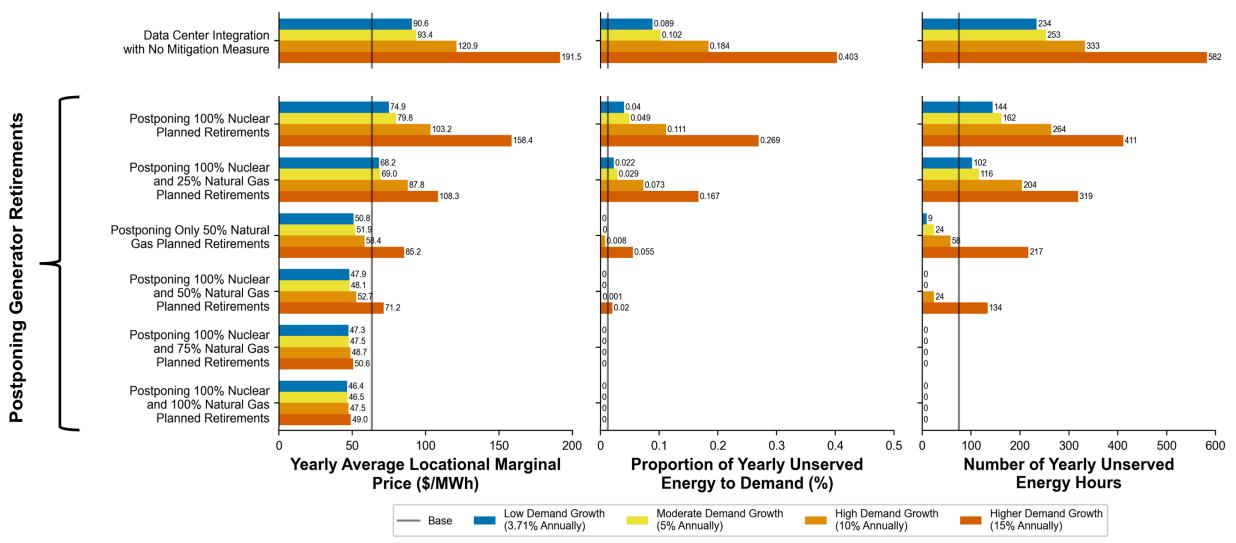
- Despite some outage events in California, the grid has relatively high reliability in 2035 under the original IM3 projected loads.
- Adding data center loads worsened the severity of outage events,
 especially in California, and led to new load-shedding events in some BAs.

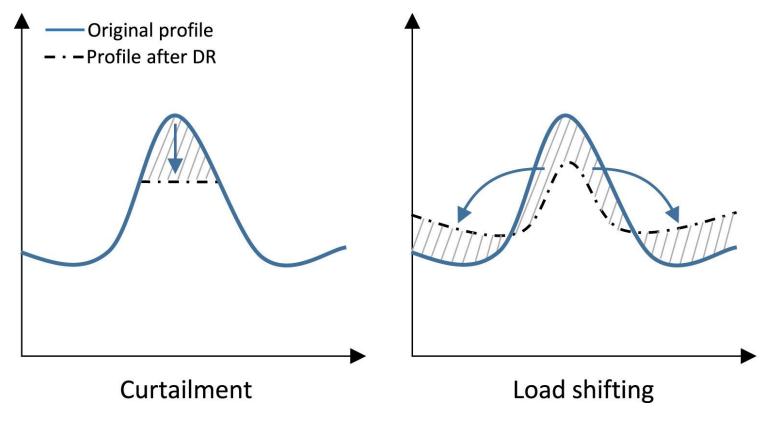


Moderate Growth (5% Annually)

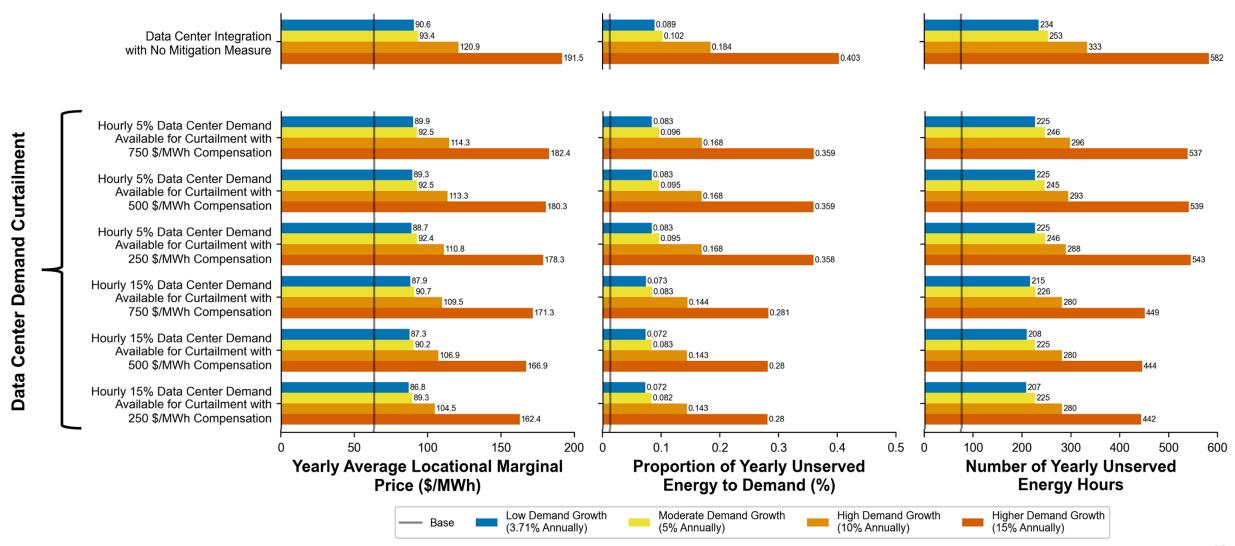



High Growth (10% Annually)


Can deferring scheduled generator retirements alleviate higher prices and unserved energy due to data centers?


Can deferring scheduled generator retirements alleviate higher prices and unserved energy due to data centers?

Modeling data center loads as interruptible demands may alleviate their worst impacts


We modified GO to enable two approaches to modeling a fraction of data center demands as flexible loads: Curtailment and load shifting.

Conceptual figure from Morales-España et al. 2022

Impact of data center demand curtailment is limited compared to deferring scheduled generator retirements

Task 2 – Impacts of data center demands, siting, and configuration on water stress and grid stress

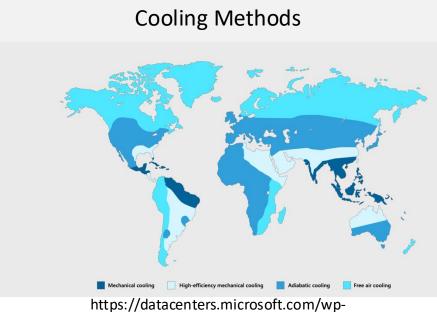
Science Questions:

- 3) Where, when, and to what extent do data centers contribute to water scarcity? Where and when does water availability constrain data center siting? What are the most important constraints for data center siting?
- 4) What is the impact on the grid and on water stress of relying on co-located generation versus remote (i.e., in the same interconnection but not the same site) generation to support data center demands?

Study Parameters						
Time Horizon	2025-2055					
Key Assumptions (also modeled as sensitivities)	 New data centers matched 1:1 with new generation Generation can be co-located or off-site Cooling water demands depend on cooling technology/water availability 					

Approach to siting new data centers

Step 1: Conduct extensive review of data center developer documents and reports to determine common factors in location decision making and technology choices.



https://sabeydatacenters.com/locations/quincy-data-center

TECHNICAL SPECIFICATIONS

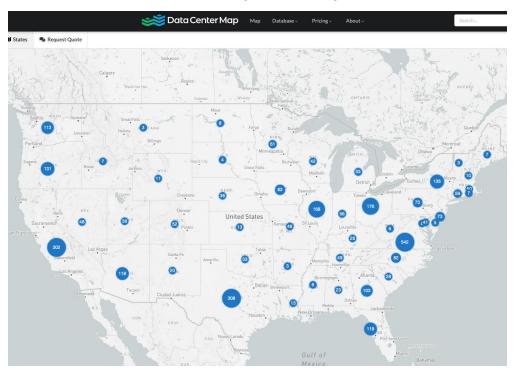
- Low risk of natural disasters
- Seismic site class C
- Sales tax exemption for tenants
- Below-average utility rates at 2.5 cents/kWh
- Air Cooled Chiller Plant with 800 tons at N+2 per data hall
- Free cooling below 30°F
- Variable Frequency Drives throughout
- Color-coded power room alignment

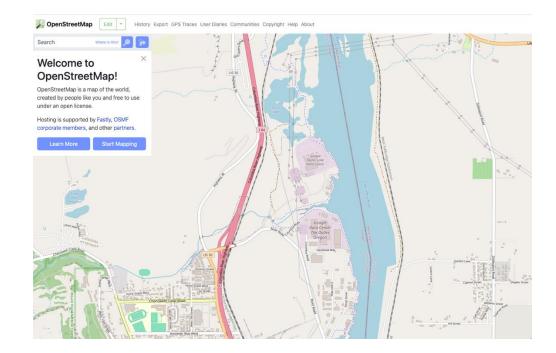
https://www.cyrusone.com/datacenters/north-america/quincy-washington

https://datacenters.microsoft.com/wpcontent/uploads/2023/05/Azure_Modern-Datacenter-Cooling_Infographic.pdf

The Switch SUPERLOOP® includes:

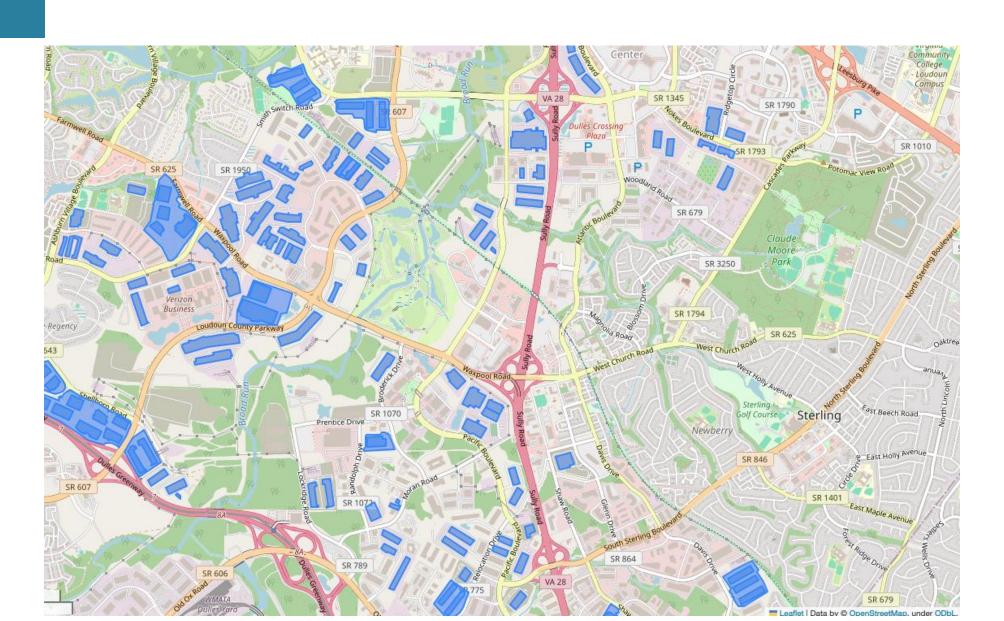
- The world's first Tier 5[®] Platinum data centers geographically separated over 500 miles, connected with a dedicated and diverse fiber network
- Strategic location to California's technology hubs Silicon Valley and Los Angeles
- One hour flight from most west coast client locations
- Built in the lowest risk area from natural disasters in western United States
- Low tax environment significantly lowering overall costs compared with California
- Both campus locations are designed to operate indefinitely without water
- Connected with low-latency dual fiber paths between ecosystems
- 4.5 milliseconds from the Bay Area basin
- 5 milliseconds from Los Angeles metro



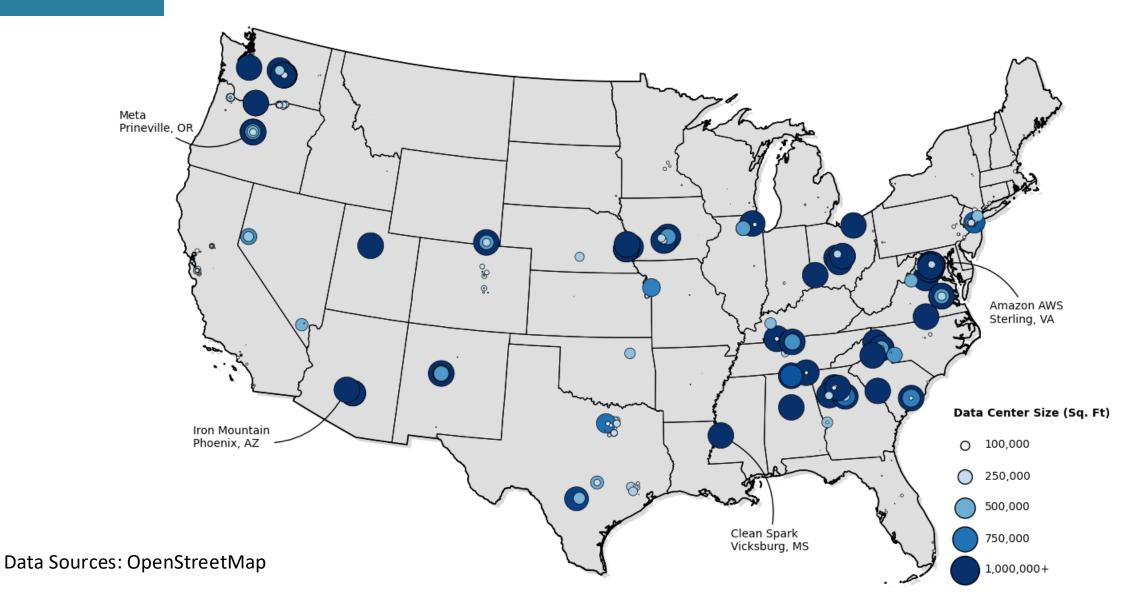

Approach to siting new data centers

Step 2: Collect geospatial data of existing large scale data centers to spatially determine additional siting commonalities and validate siting suitability.

Proprietary



Crowd-sourced


VS

Virginia is for data centers

Data centers are being built in many places, but tend to be clumped together

We need to spatially represent key drivers of data center locations

Step 3: Identify sources of geospatial data that can be used to represent data center siting influences.

LAND AVAILABILITY & COST

US Census Bureau

PROXIMITY TO FIBER NETWORK

CHEAP & RELIABLE ELECTRICITY

HIFLD & OPENEI

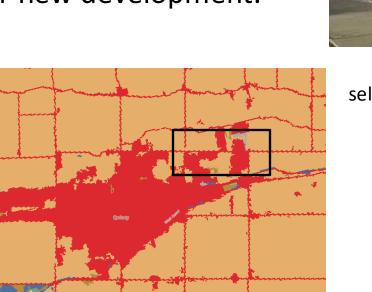
ACCESS TO WATER SUPPLIER

US EPA

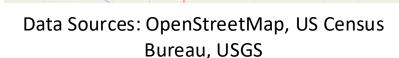
TAX RATES & INCENTIVES

US Census Bureau

LOW NATURAL HAZARD RISK

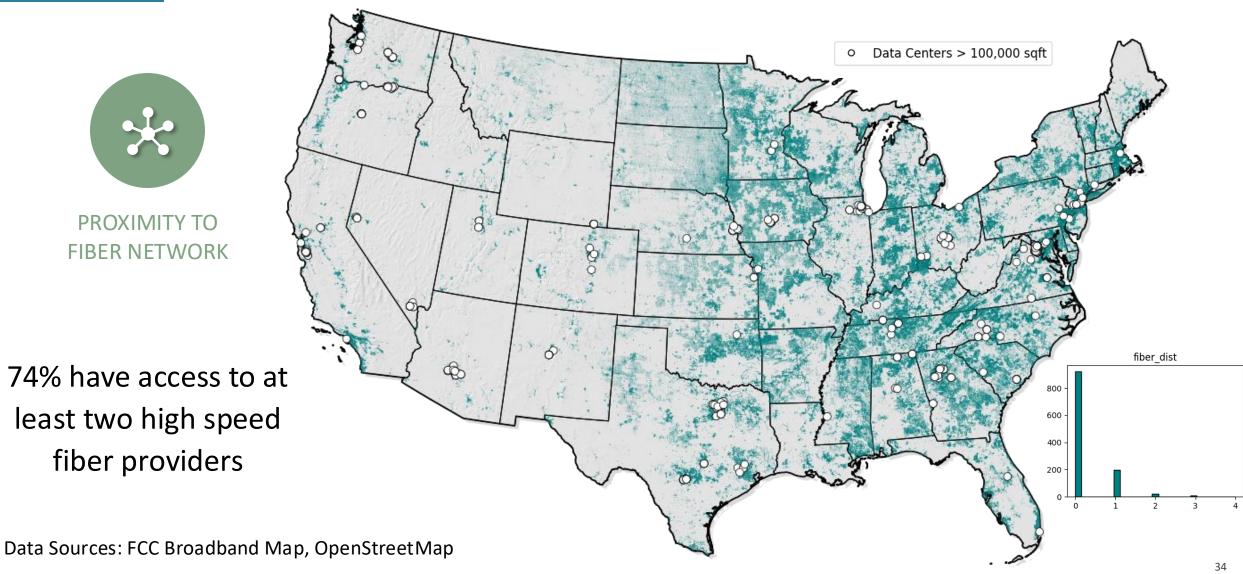

US FEMA

Large data centers are routinely purchasing large plots of inexpensive land outside of urban/developed areas

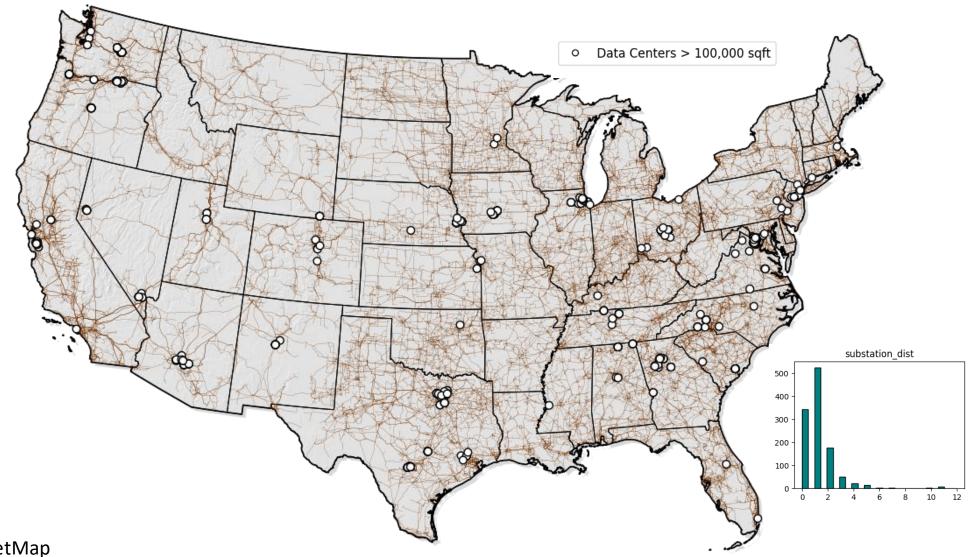

We can extract these areas using high resolution (30m) land cover data to determine where available space may be for new development.

NLCD 2020 Land Cover, 30m resolution

https://www.datacenterfrontier.com/siteselection/article/11430108/cyrusone-h5-bringmore-data-centers-to-quincy

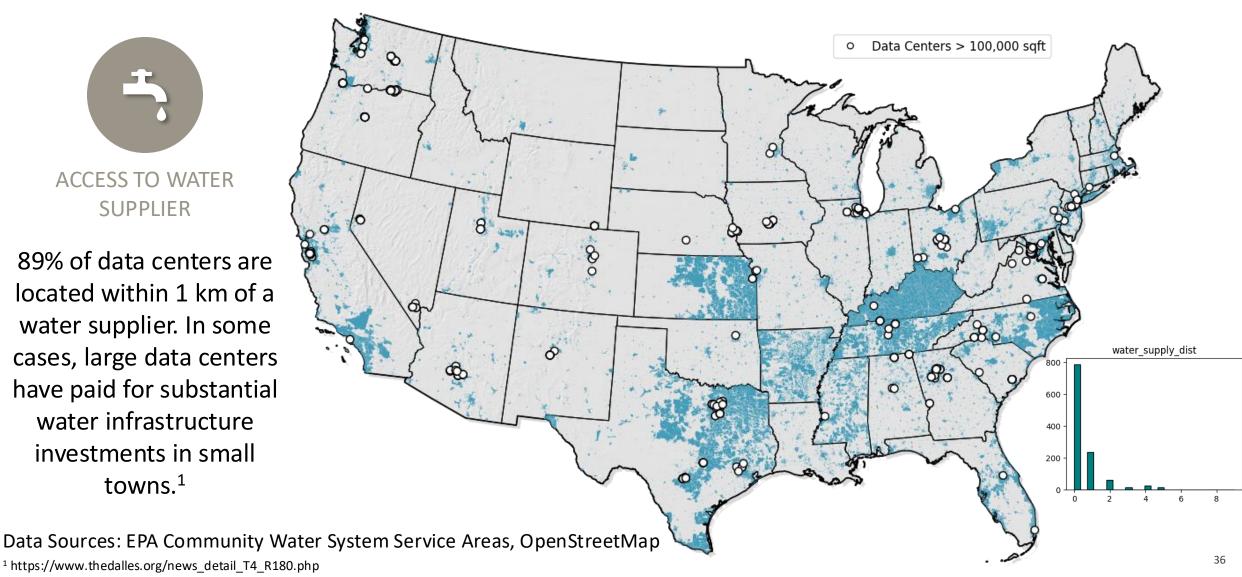

Quincy, WA Urban Area Boundary

>97% of data centers are located within 1km of a highspeed fiber provider service territory

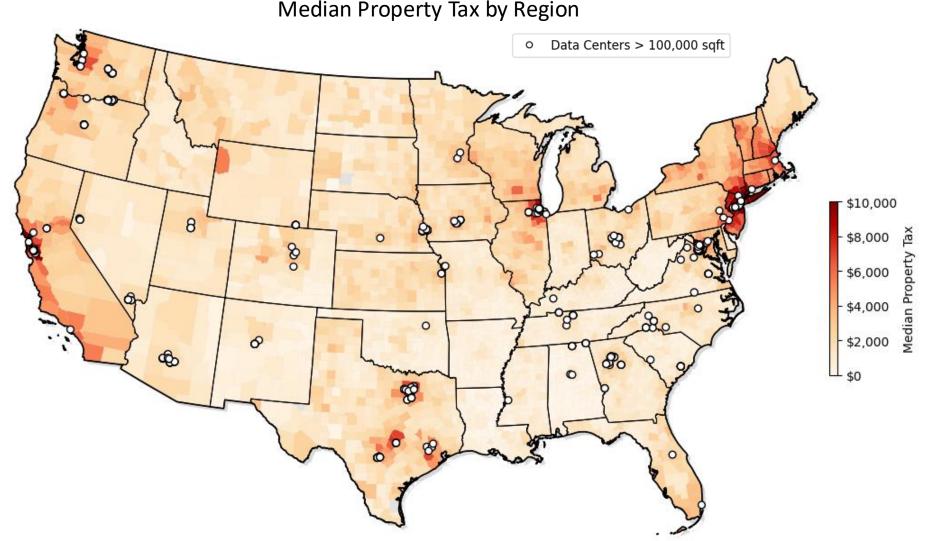

74% have access to at least two high speed fiber providers

Having more direct access to reliable power sources is prioritized because service disruptions are costly

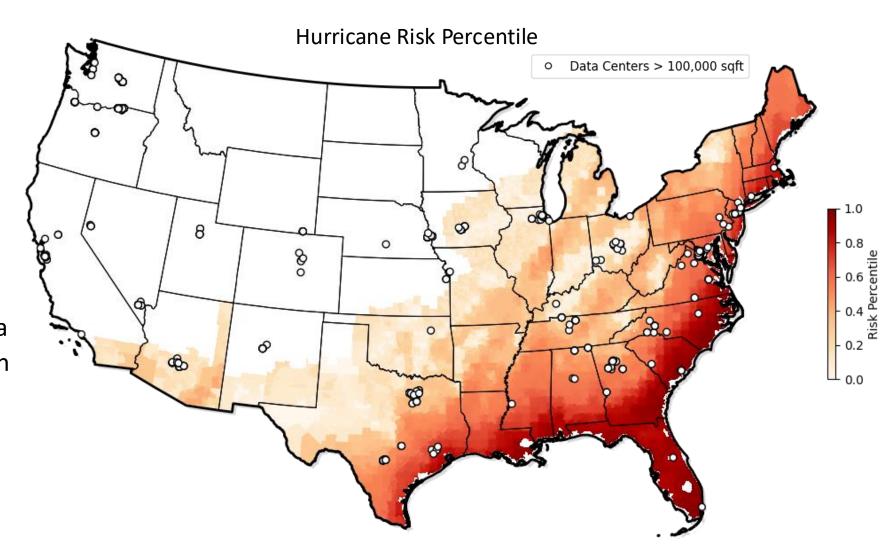
76% of data centers are located within 1 km of a substation


Data Sources: HIFLD, OpenStreetMap

Data centers need water for onsite workers as well as cooling if they have wet-cooled systems


89% of data centers are located within 1 km of a water supplier. In some cases, large data centers have paid for substantial water infrastructure investments in small towns.¹

Sales tax rates and property tax rates are two large drivers


For large data centers, developers will sometimes choose to build in an entirely different state from their market and build long, expensive fiber lines to avoid higher taxes.

There is limited evidence that high natural hazard risk dissuades developers from a particular region

While data center
developers mention this as a
key consideration, they often
site in areas with high
natural hazard risk (e.g.,
earthquake, tornado,
hurricane, flood).

A new version of IM3's generation siting model will be used to determine which of the available locations is optimal

Example Composite Excluded Areas

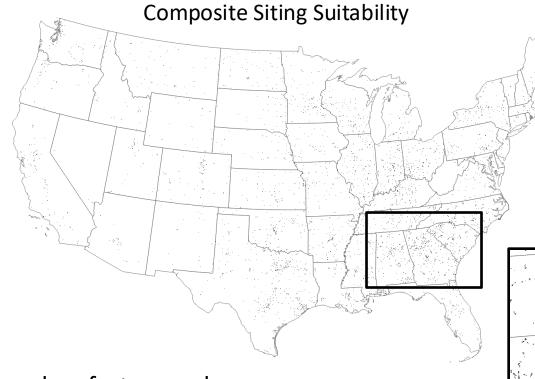
Waterbodies

Developed land

Airport areas

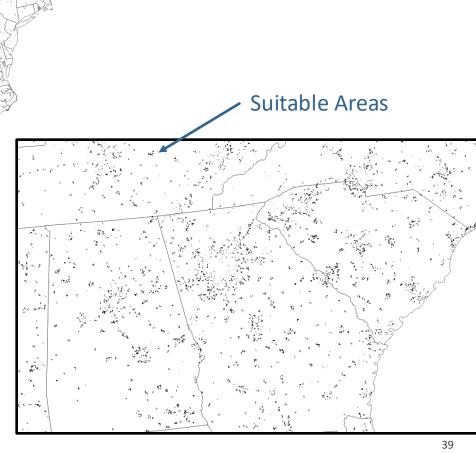
Military zones and training areas

Areas with high slope

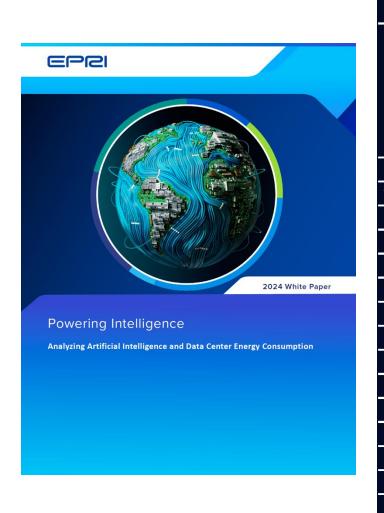

Local parks/leisure areas

Areas far from substations

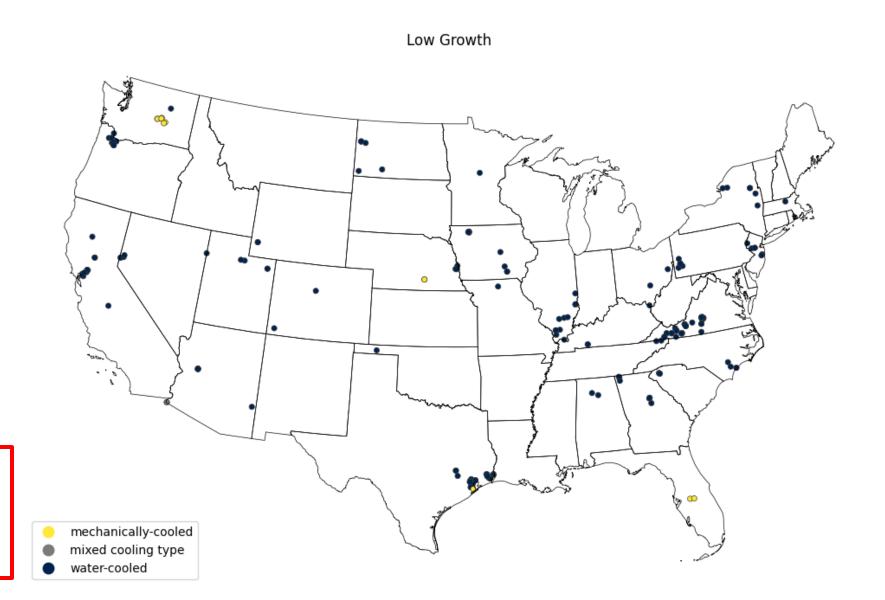
Areas far from public water supplier


Areas without high-speed fiber

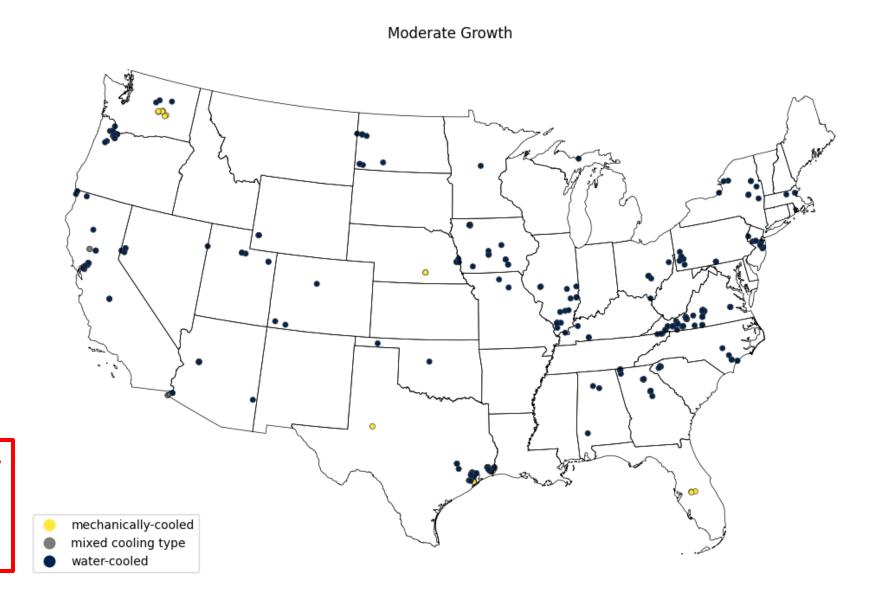
Protected areas


Siting locations based on factors such as:

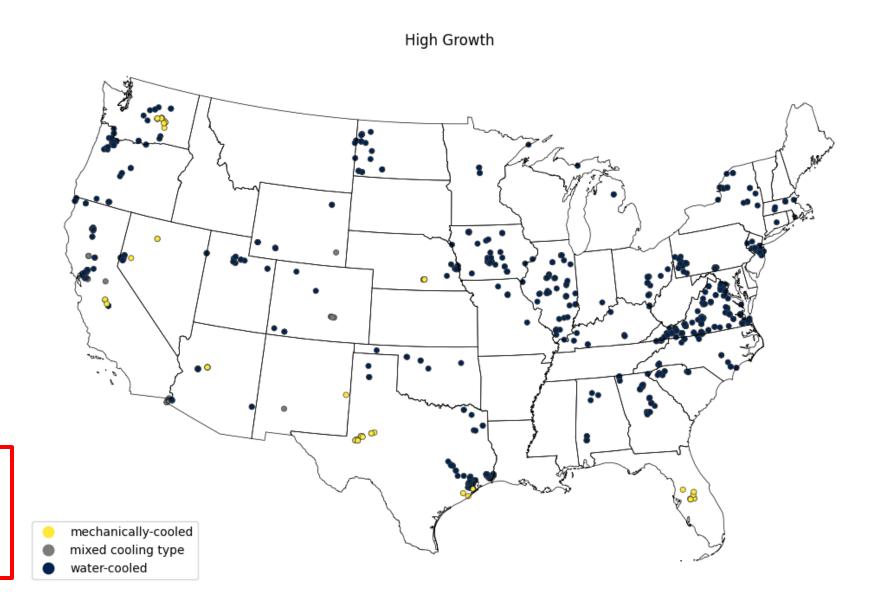
- Property tax rate
- Sales tax rate
- Electricity prices
- Proximity to substations
- Amount of fiber needed to connect to network

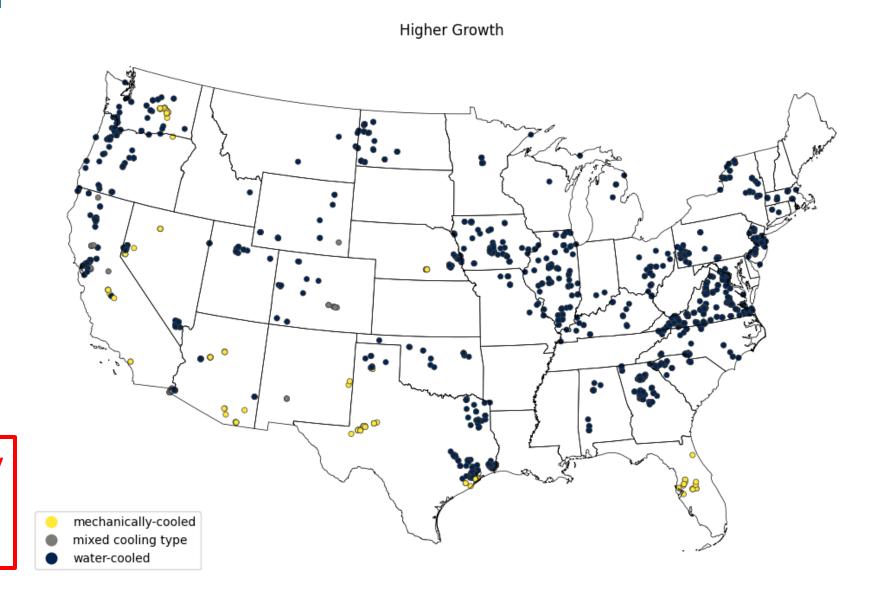


Projections of data center growth were sourced from the peer-reviewed and gray literature

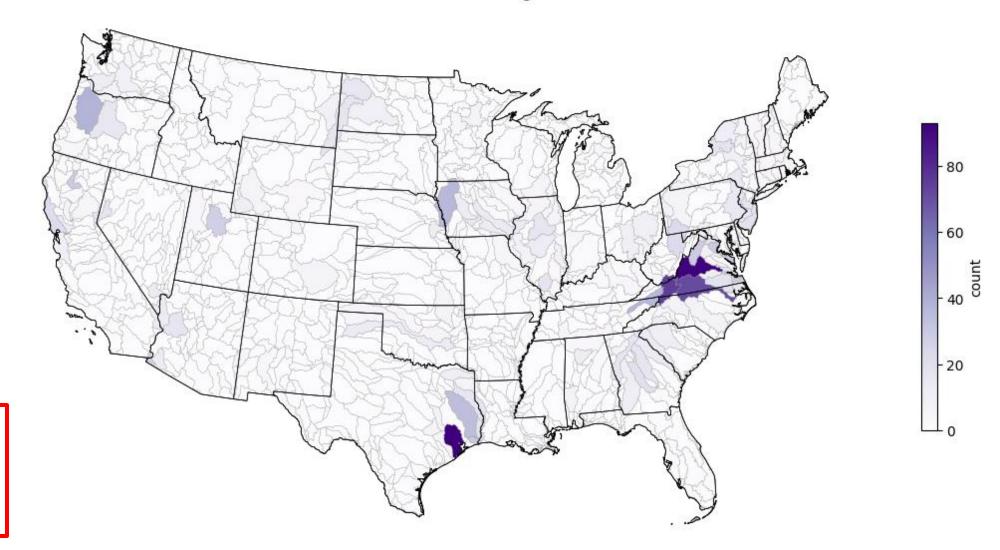


FORECASTED SCENARIOS: PROJECTIONS OF DATA CENTER ELECTRICITY CONSUMPTION IN TOP 15 STATES (2023—2030)										
	2023 Load		Low-growth scenario (3.71%)		Moderate-growth scenario (5%)		High-growth Scenario (10%)		Higher-growth Scenario (15%)	
STATE	MWh/y	% of Total State Electricity Consumed (%EC)	MWh/y	% of Total State Electricity Consumed (%EC)	MWh/y	% of Total State Electricity Consumed (%EC)	MWh/y	% of Total State Electricity Consumed (%EC)	MWh/y	% of Total State Electricity Consumed (%EC)
Virginia	33,851,122	25.59%	43,683,508	29.28%	47,631,928	31.10%	65,966,260	38.47%	89,880,357	46.00%
Texas	21,813,159	4.59%	28,149,002	5.47%	30,693,306	5.94%	42,507,676	8.04%	57,917,564	10.64%
California	9,331,619	3.70%	12,042,078	4.43%	13,130,525	4.81%	18,184,686	6.54%	24,777,000	8.70%
Illinois	7,450,176	5.48%	9,614,151	6.53%	10,483,145	7.08%	14,518,285	9.54%	19,781,455	12.56%
Oregon	6,413,663	11.39%	8,276,574	13.39%	9,024,668	14.43%	12,498,415	18.93%	17,029,342	24.14%
Arizona	6,253,268	7.43%	8,069,590	8.81%	8,798,975	9.53%	12,185,850	12.73%	16,603,465	16.58%
lowa	6,193,320	11.43%	7,992,230	13.44%	8,714,623	14.48%	12,069,029	18.99%	16,444,294	24.21%
Georgia	6,175,391	4.26%	7,969,093	5.08%	8,689,396	5.51%	12,034,090	7.48%	16,396,690	9.92%
Washington	5,171,612	5.69%	6,673,757	6.77%	7,276,977	7.34%	10,078,009	9.88%	13,731,490	13.00%
Pennsylvania	4,590,240	3.16%	5,923,520	3.78%	6,458,929	4.11%	8,945,079	5.61%	12,187,850	7.49%
New York	4,067,385	2.84%	5,248,796	3.40%	5,723,219	3.69%	7,926,182	5.05%	10,799,583	6.75%
New Jersey	4,038,360	5.42%	5,211,341	6.46%	5,682,378	7.00%	7,869,621	9.44%	10,722,517	12.44%
Nebraska	3,959,520	11.70%	5,109,601	13.75%	5,571,442	14.81%	7,715,984	19.41%	10,513,184	24.71%
North Dakota	3,915,720	15.42%	5,053,079	18.00%	5,509,811	19.31%	7,630,631	24.89%	10,396,888	31.11%
Nevada	3,416,707	8.69%	4,409,122	10.28%	4,807,649	11.10%	6,658,195	14.75%	9,071,924	19.07%

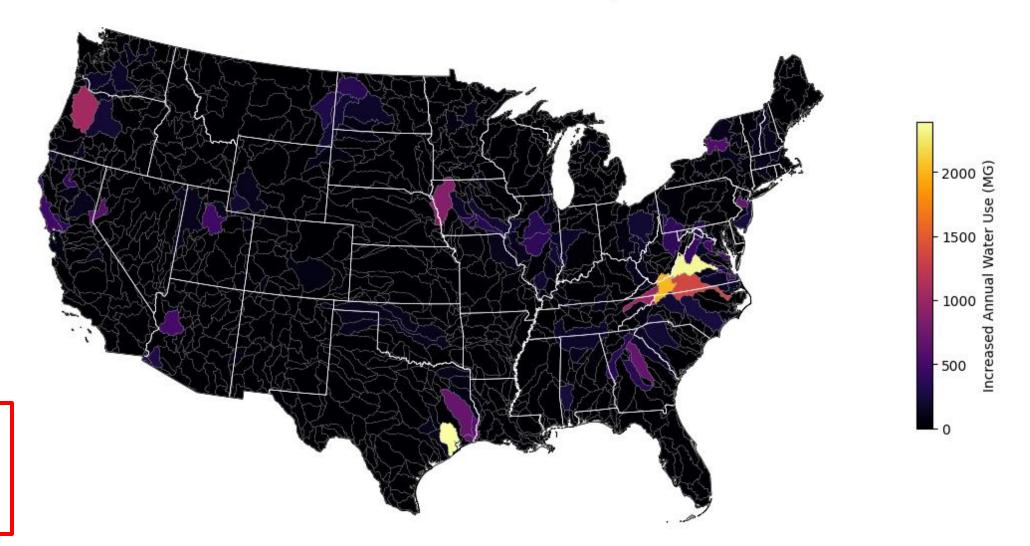

Low growth scenario sitings through 2035


Moderate growth scenario sitings through 2035

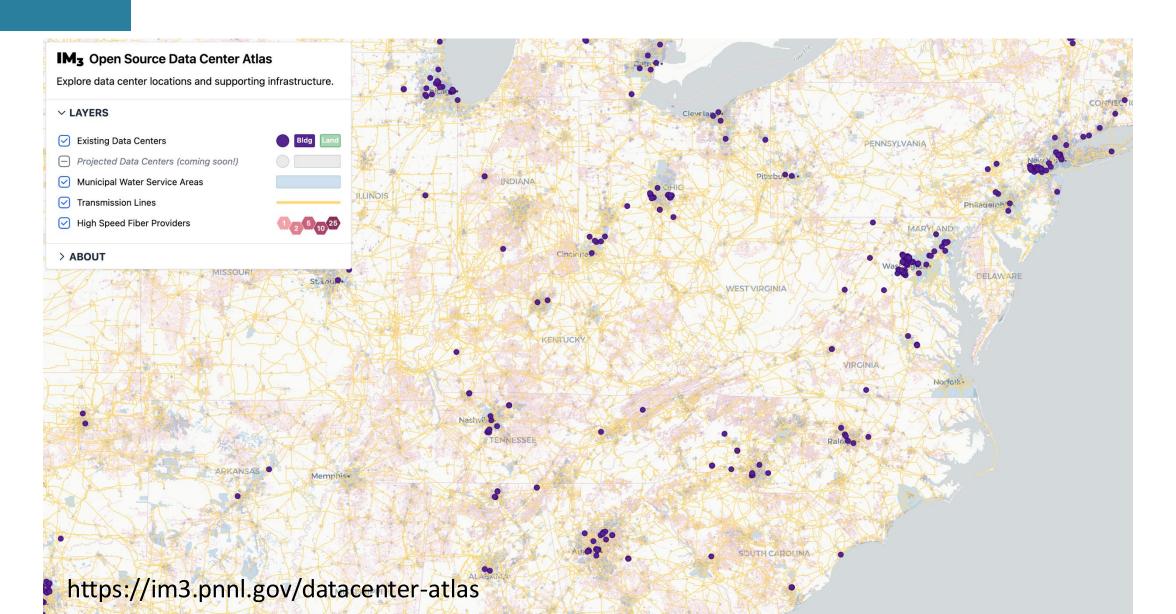
High growth scenario sitings through 2035



Higher growth scenario sitings through 2035


A small number of basins may see many new water-cooled data centers

Number of New Data Centers - Higher Growth



Basins in Texas, Virginia, Oregon, and Iowa may see large basin-level water use increases due to data centers

Increased Water Demand from New Data Centers - High Growth

We are making the raw data publicly available

Soapbox thoughts

- We can move fast. Seed was planted on 23-Jan and SOWs for this effort were approved on 5-Mar.
- We were able to do this because IM3's tools were designed to be flexible and extensible:
 - TELL model for data center loads
 - GO model for demand flexibility
 - CERF model for data center siting
- Listen, think, adapt.

Conclusions

- Data centers significantly accelerate load growth in all three interconnections.
- Compared to our base scenario with no data centers, annual average electricity prices in 2035 increase 43%, 47%, 91%, and 202% under the EPRI low, moderate, high, and higher data center load growth scenarios, respectively.
- Postponing 100% of nuclear and 50% of natural gas planned retirements (≈22.6 GW) eliminates all price increases in 2035 due to data centers for the EPRI low, moderate, and high growth scenarios.
- Treating data center loads as flexible demands led to only marginal reductions in grid stress.
- Data center locations are sensitive to electricity prices, access to water, access to multiple fiber provides, and proximity to substations.

IM₃ References

- American Clean Power (ACP), 2025: US National Power Demand Study. https://cleanpower.org/resources/us-national-power-demand-study/.
- Electric Power Research Institute (EPRI), 2024: Powering Intelligence: Analyzing Artificial Intelligence and Data Center Energy Consumption. https://www.epri.com/research/products/0000000003002028905.
- North American Electric Reliability Corporation (NERC), 2024: 2024 Long-Term Reliability Assessment. https://www.nerc.com/pa/RAPA/ra/Reliability%20Assessments%20DL/NERC_Long%20Term%20Reliability%20 Assessment_2024.pdf.
- Northwest Power and Conservation Council (NWPCC), 2024: Pacific Northwest Power Supply Adequacy Assessment for 2029. https://www.nwcouncil.org/reports/2024-4/.
- Siddik, M. A. B., A. Shehabi, and L. Marston, 2021: The environmental footprint of data centers in the United States. Environ. Res. Lett., 16, 064017, doi:10.1088/1748-9326/abfba1.
- Western Electricity Coordinating Council (WECC), 2024: An Assessment of Large Load Interconnection Risks in the Western Interconnection. https://www.wecc.org/wecc-document/19111.